
HACKING THE USB WORLD

INTERFACES, ENDPOINTS, AND TRANSFERS
WITH FACEDANCER

KATE TEMKIN & DOMINIC SPILL

ENDPOINTS

Most USB devices use a number of
communication channels, which are
described in terms of their endpoints.

All diagrams from the USB 2.0 specification.

Endpoints both help to provide conceptual
channels and help the host to schedule packets.

ENDPOINT TYPES
Type Purpose

Control
Communications channel used for standard communications and simple packetized back-and-forth. Used for initial
device discovery and setup. Only transport that also specifies a packet format. EP0 is always a control endpoint.

Bulk Transport for shipping bytes ‘in bulk’.
Bulk endpoints tend to be assigned the leftover bandwidth on the bus.

Interrupt Transport for short bursts of latency-sensitive data.
Used in cases that are similar to when you’d trigger an interrupt (e.g. keyboard keypress state).

Isochronous Transport for data that grows “stale” if not delivered quickly— such as video frames from a camera.

ENDPOINT DESCRIPTORS

With the exception of the control endpoint,
which is always present, each endpoint is
described by an endpoint descriptor.

The descriptor contains the endpoint’s vital
statistics, including its address and type. Note that
the endpoint’s directed is encoded in its address.

The MSB of the endpoint number specifies its address.
0x81 = endpoint one IN
0x80 = endpoint one OUT

INTERFACES

USB devices can present more than one
logical function– for example, a device
can be both a keyboard and mouse.

To help organize endpoints, and to allow the
host to use multiple drivers, endpoints are
organized into interfaces based on function.

INTERFACE DESCRIPTORS

Each interface is described by an interface descriptor,
which describes the grouping for the logical function.

Interfaces can contain a description of the
device’s class, allowing the host to figure out
if it has drivers for an individual interface.

CONFIGURATION DESCRIPTORS
A device can opt to provide multiple collection
of interfaces, and allow the host to switch
between those. These collections are known
as configurations, and are described using a
configuration descriptor.

Each configuration provides a summary of its expected
power consumption, allowing hosts to select
configurations that match power requirements.

This is rarely used.

GETTING CONFIGURATION DESCRIPTORS
A GET_DESCRIPTOR can read a configuration and
all of its ‘subordinate’ descriptors at once, if the
length requested is long enough.

SCOPING OUT A DEVICE
The device descriptor contains the number of configurations

present, which can then be used to issue a
GET_DESCRIPTOR for each configuration.

SET_CONFIGURATION REQUESTS

Before any endpoints other than EP0 can be
used, a configuration must be selected
using a SET_CONFIGURATION request.

Setting configuration zero marks the device as
unconfigured.

BULK TRANSACTIONS
All diagrams from the USB 2.0 specification.

T

D

H

Field Value
Length 256

Address 0x1000

Field Value
Length 192

Address 0x1040

Field Value
Length 128

Address 0x1080

Field Value
Length 64

Address 0x10C0

Field Value
Length 0

Address 0x1100

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN

0 bytes
dataTRANSFERS

a transfer issues transactions containing
maximum size packets until we run out of data

… at which point a short packet is issued.

Field Value
Length 256

Address 0x1000

Field Value
Length 192

Address 0x1040

Field Value
Length 128

Address 0x1080

Field Value
Length 64

Address 0x10C0

Field Value
Length 0

Address 0x1100

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN 64 bytes data

PID
IN

0 bytes
dataTRANSFERS

This has some interesting
security consequences.

Usually, both device and host controllers automate
breaking transfers into transactions.

