HACKING THE USB WORLD
&WITH FACEDANCER

INTERFACES, ENDPOINTS, AND TRANSFERS
KATE TEMKIN & DOMINIC SPILL

}{

ENDPOINTS

Host

Pipes

| USB Logical Device

Client
Software

Buffers

i—

Communication

3
1
1

Interface

Flows

Endpoints

Figure 5-10. USB Communication Flow

Most USB devices use a number of
communication channels, which are
described in terms of their endpoints.

Endpoints both help to provide conceptual
channels and help the host to schedule packets.

All diagrams from the USB 2.0 specification.

ENDPOINT TYPES

Type Purpose

Communications channel used for standard communications and simple packetized back-and-forth. Used for initial
Control device discovery and setup. Only transport that also specifies a packet format. EPO is always a control endpoint.

Transport for shipping bytes ‘in bulk’.

Bulk Bulk endpoints tend to be assigned the leftover bandwidth on the bus.

Transport for short bursts of latency-sensitive data.

Interrupt Used in cases that are similar to when you’d trigger an interrupt (e.g. keyboard keypress state).

Isochronous Transport for data that grows “stale” if not delivered quickly— such as video frames from a camera.

ENDPOINT DESCRIPTORS

With the exception of the control endpoint,
which is always present, each endpoint is
described by an endpoint descriptor.

bLength 7

bDescriptorType ENDPOINT (0x05)

bEndppintAddress 1IN (Ob10000001)

e e e el 9 ——_ The descriptor contains the endpoint’s vital

ointerval o statistics, including its address and type. Note that

the endpoint’s directed is encoded in its address.

The MSB of the endpoint number specifies its address.
0x81 = endpoint one IN
0x80 = endpoint one OUT

INTERFACES

Viow Speed device @ 16 (@x14210000) :ttt e Composite device: "Endura Pro Keyboard "
» Port Information: 0x0018
P Number Of Endpoints (includes EP@):
b Device Descriptor

¥ (Configuration Descriptor (current config):c.iiiinininnnn. "HID KB/MS™
P Length (and contents): 59
Number of Interfaces: 2
Configuration Value: 1

Attributes: 0xA® (bus-powered, remote wakeup)

| w o USB devices can present more than one
Mlternate Setting —_logical function— for example, a device
(oot Tnterface) can be both a keyboard and mouse.

Number of Endpoints
Interface (lass:
Interface Subclass;
Interface Protocol:

P HID Descriptor

P Endpoint Bx81 - Interrupt Input

¥ Interface #1 - HID/Boot Interface

Alternate Setting
Number of Endpoints
Interface (lass:
Interface Subclass;

oW e®

................................. "HID Mouse"

(HID)
(Boot Interface)

NP WS

Interface Protocol:
» HID Descriptor
P Endpoint Bx82 - Interrupt Input

To help organize endpoints, and to allow the
host to use multiple drivers, endpoints are
organized into interfaces based on function.

INTERFACE DESCRIPTORS

Each interface is described by an interface descriptor,
which describes the grouping for the logical function. \

2 Interface Descriptor Radix: MY

bLength 9
bDescriptorType INTERFACE (0x04)
binterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 2

binterfaceClass Vendor Specific (0xff)
binterfaceSubClass Unknown (0xff)
binterfaceProtocol Unknown (0xff)
iinterface test (2)

Interfaces can contain a description of the
device’s class, allowing the host to figure out
if it has drivers for an individual interface.

CONFIGURATION DESCRIPTORS

& Configuration Descriptor
bLength

bDescriptorType
wTotalLength
bNuminterfaces
bConfigurationValue
iConfiguration
bmaAttributes.Reserved

bmAttributes.RemoteWakeup

bmAttributes.SelfPowered
bMaxPower

A device can opt to provide multiple collection
of interfaces, and allow the host to switch
o between those. These collections are known

9 as configurations, and are described using a

— configuration descriptor.
:

1

None (0)

0

RemoteWakeup
Supported (Ob1)

Bus Powered (0b0)
44mA (0x16)

Each configuration provides a summary of its expected
power consumption, allowing hosts to select
configurations that match power requirements.

This is rarely used.

GETTING CONFIGURATION DESCRIPTORS

v =) Get Configuration Descriptor Index=0 Length=32

») SETUP txn 80 06 00 92 00 00 20 @0
A GET_DESCRIPTOR can read a configuration an/ Lo o PO o 05 28 00 61 61 00 15
all of its ‘subordinate’ descriptors at once, if the » & INtn [1 POLL] 16 09 04 00 00 02 FF FF
» @ INtxn [1POLL) FF @82 ©7 @5 81 @2 40 @0
length requested is long enough. » & INtn [1 POLL] 00 07 05 02 02 40 00 00
» @ OUT txn
Endpoint Descriptor Radix:
bLength 7
bDescriptorType ENDPOINT (0x05)
& Configuration Descriptor Radix: [e ——— bEndpointAddress 1IN (0b10000001)
— 9 omAtlbes Transieryps Bulk 0010)
bDescriptorType CONFIGURATION (0x02) bLength 9 wMaxPacketSize.PacketSize 64
wTotalLength 32 bDescriptorType INTERFACE (0x04) binterval 0
bNuminterfaces 1 — binterfaceNumber 0
bConfigurationValue 1 T bAlternateSetting 0
iConfiguration None (0) bNumEndpoints 2 . N— I ———
bmAttributes.Reserved 0 binterfaceClass Vendor Specific (0xff) \ e Radibx: C20
bmAtibutes RemoteWakeup §Cppoied (b pirinoeProfoost | Uniown POoART ENDPOWT (0x05)
nterfacePro nknown escriptorType
bmAttributes.SelfPowered Bus Powered (0b0)
bMaxPower 44mA (0x16) iinterface test (2) bEndpointAddress 2 OUT (0b00000010)

bmaAttributes.TransferType Bulk (Ob10)
wMaxPacketSize.PacketSize 64
binterval 0

SCOPING OUT A DEVICE

B Device Descriptor Radix: ETI)) . . .
bLength 18 The device descriptor contains the number of configurations
bDescriptorType DEVICE (0x01) . .
bodUSB 110 0x0110) present, which can then be used to issue a
bDeviceClass Defined in Interface (0x00) _ _
bDeviceSubClass Defined in Interface (0x00)
D0ouooBubClase Defined n nieracs (00} GET_DESCRIPTOR for each configuration.
bMaxPacketSize0 8
idVendor 0x0403
idProduct 0x6001 al
bedDevice 4,00 (0x0400)
iManufacturer ftdi (1)
iProduct test (2) 1= s
Tion i © e oo CRE
bNumConfigurations 1 \ bLength 7
bDescriptorType ENDPOINT (0x05)

°°““°“"“°“°“°""‘°’ e omArbuies Tane Bk (00i0)
— : @ Interface Descriptor Radix: CINE) bmAttributes. TransferType Bulk (0b10)
bDescriptorType CONFIGURATION (0x02) bLength 9 wMaxPacketSize PacketSize 64
wTotalLength 32 bDescriptorType INTERFACE (0x04) binterval 0
bConfigurationValue 1 ~— bAlternateSetting 0 /
iConfiguration None (0) ~bNumEndpoints 2 \ Endpoint Descriptor GEL I auto |
bmAttributes.Reserved 0 binterfaceClass Vendor Specific (0xff) I
bmAtiributes.RemoteWakeup ggg‘gmaﬁ;jﬁ binterfaceSubClass Unknown (0xff) bLength 7

binterfaceProtocol Unknown (0xff) bDescriptorType ENDPOINT (0x05)
bmaAttributes.SelfPowered Bus Powered (0b0)
bMaxPower 44mA (0x16) iinterface test (2) bEndpointAddress 2 OUT (0b00000010)

bmAttributes.TransferType Bulk (0b10)
wMaxPacketSize.PacketSize 64
binterval 0

SET_CONFIGURATION REQUESTS

B Standard Request

Radix: ET

bmRequestType.Recipient Device (0b0)

bmRequestType.Type
bmRequestType.Direction
bRequest

wValue

windex

wlLength

¥) SetAddress
» () SETUP txn
» @ INtxn

Standard (0b0)
Host-to-Device (0b0)

Set Configuration (0x9)
Configuration Value (0x1)
0x0

0x0

Address=27
P2 @5 1B 92 00 20 00 00

Before any endpoints other than EPO can be
used, a configuration must be selected
using a SET_CONFIGURATION request.

Setting configuration zero marks the device as
unconfigured.

Token

Data

Handshake

BULK TRANSACTIONS

Idle

High-speed OUT only

N
/ \ N
Error
DAT A0/
DATAT AR NAK STALL
N { { { L Idle
ACK Data NYET ACK NAK STALL Data
Error ' Error
L N\ L L L [\ » Idle
Host Function

All diagrams from the USB 2.0 specification.

Field Value Field Value Field Value Field Value Field Value

Length

256

Address 0x1000

Length

192

Address 0x1040

Length

128

Address 0x1080

Length 64 Length O
Address 0x10CO Address 0x1100

PID
IN

64 bytes data

PID
IN

64 bytes data

TRANSFERS

a transfer issues transactions containing
~——— maximum size packets until we run out of data

PID
IN

64 bytes data

... at which point a short packet is issued.

PID

N 64 bytes data

PID | O bytes
IN data

Field Value Field Value Field Value Field Value Field Value

Length

256

Address 0x1000

Length

192

Address 0x1040

Length

128

Address 0x1080

Length
Address 0x10CO

64 Length O
Address 0x1100

PID
IN

64 bytes data

\

PID
IN

64 bytes data

TRANSFERS

Usually, both device and host controllers automate
breaking transfers into transactions.

PID
IN

64 bytes data

This has some interesting
security consequences.

PID
IN

64 bytes data

PID | O bytes
IN data

